Skip to main content
Log in

Biogeochemical processes in tropical seagrass beds and their role in determining the productivity of the meadows

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Porewater nutrient profiles such as nitrate (0.33–1.38 μM), ortho phosphate (1.47–3.44 μM), total nitrogen (1.24–7.22 μM) and total phosphorus (3.51–5.98 μM) in seagrass ecosystem subjected to different nutrient loading indicated the limitation of porewater nutrients in all the strata of different sampling sites of Palk Bay region. Sediment pH in the seagrass beds were alkaline and anoxic condition increased with increase in depth (56.2 mV to −52.7 mV). Significant positive correlation was observed between silt content and carbon (r = 0.359, P < 0.05) and nitrogen contents (r = 0.381, P < 0.05) of the sediment. Specieswise interpretation also indicated C/N ratio of the stations greatly promoted the biomass in Halodule pinifolia and Cymodocea serrulata. The sediment C/N stoichiometry (4.7: 1–16: 1) indicated that autochthonous C sources regulates the C biogeochemical processes in seagrass ecosystem which is well corroborated by the least square regression value (R 2 = 0.92) obtained between the C/N ratio and biomass. Meanwhile, the N/P ratio (11.7: 1–17.2: 1) indicated P deficiency in the seagrass beds. Though, nitrogen limitation was evident in the porewater, but it has not reflected on seagrass biomass and productivity which is, evidenced by the higher biomass of individual species. Nutrient biogeochemical transformations across the sediment-water interface influence the productivity of seagrasses in the Palk Bay region. In addition, nutrient pollution, eutrophication and light limitation due to algal mats decreased the growth of seagrasses which need to be attempted to develop the nutrient policies for sustainable management and restoration of seagrass ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. L. Chmura, S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch, “Global carbon sequestration in tidal, saline wetland soils,” Global Biogeochem. Cycles 17, 1111 (2003).

    Article  Google Scholar 

  • P. M. Eldridge and M. G. Johnson, “Seagrass-sediment interactions,” in US Environmental Protection Agency, Washington DC, 2004), pp. 1–14.

    Google Scholar 

  • S. Entriquez, N. Marba, C. M. Duarte, B. I. van Tussenbroek, and G. Reyes-Zavala, “Effects of seagrass Thalassia testudinum on sediment redox,” Mar. Ecol.: Progr. Ser. 219, 149–158 (2001).

    Article  Google Scholar 

  • P. C. A. Erftemeijer and J. J. Middelburg, “Sediment nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia),” Mar. Ecol.: Progr. Ser. 102, 187–198 (1993).

    Article  Google Scholar 

  • P. L. A. Erftemeijer and J. J. Middelburg, “Mass balance constraints on nutrient cycling in tropical seagrass beds,” Aquat. Bot. 50, 21–36 (1995).

    Article  Google Scholar 

  • E. Gacia, and C. M. Duarte, “An approach to the measurement of particle flux and sediment retention within seagrass (Posidonia oceanic) meadows,” Aquat. Bot. 65, 255–268 (2001).

    Article  Google Scholar 

  • A. B. Hebert, Diagenesis in Seagrass Vegetated Sediments: Biogeochemical Processes On Diurnal Time Scales, Ph.D Thesis, (Texas A & M University, 2004).

    Google Scholar 

  • F. M. L. Heijs, Some structural and functional aspects of the epiphytic component of four seagrass species (Cymodoceoidae). Aquat. Bot. 23, 225–247 (1985).

    Article  Google Scholar 

  • M. A. Hemminga and C. M. Duarte, Seagrass Ecology (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  • M. A. Hemminga, P. G. Harrison, and F. van Lent, “The balance of nutrient losses and gains in seagrass meadows,” Mar. Ecol.: Progr. Ser. 71, 85–96. (1991).

    Article  Google Scholar 

  • M. Holmer, and S. L. Nielson, “Sediment sulfur dynamic related to biomass-density patterns in Zostera marina (eelgrass) beds,” Mar. Ecol.: Progr. Ser. 46, 163–171 (1997).

    Article  Google Scholar 

  • M. Holmer, “Productivity and biogeochemical cycle in seagrass ecosystems,” in Coastal Wetlands: an Integrated Ecosystem Approach, Ed. by G. M. R. Perillo, E. Wolanski, D. R. Cahoon, and M. M. Brinson (Elsevier Science, Amsterdam, 2009), pp. 377–402.

    Google Scholar 

  • M. Holmer, F. O. Andersen, S. L. Nielsen, and T. S. Boschker-Henricus, “The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments,” Aquat. Bot. 71, 1–17 (2001).

    Article  Google Scholar 

  • R. W. Howarth, H. J. Jensen, R. Marino, and H. Postma, “Transport to and processing of P in nearshore and oceanic waters,” in SCOPE 54, Phosphorus in the Global Environment. Transfers, Cycles, and Management, Ed. by H. Thiessen (John Wiley and Sons, New York, 1995), pp. 323–345.

    Google Scholar 

  • R. A. Jahnke, “A simple, reliable, and inexpensive pore-water sampler,” Limnol. Oceanogr. 33, 483–487. 1988.

    Article  Google Scholar 

  • J. E. Kaldy, “Production ecology of the non-indigenous seagrass, dwarf eelgrass (Zostera japonica Ascher. & Graeb.), in a Pacific northwest estuary, USA,” Hydrobiologia 553, 201–217 (2006).

    Article  Google Scholar 

  • L. Kannan, and T. Thangaradjou, “Identification and assessment of biomass and productivity of seagrasses,” in National Training Workshop on Marine and Coastal Biodiversity Assessment for Conservation and Sustainable Utilization (SDMRI Publication, 2006), pp. 9–15.

    Google Scholar 

  • L. Kannan, and T. Thangaradjou, “Seagrasses,” in Biodiversity in Mangrove Ecosystem, UNU-UNESCO International Training Course, Course Manual, 130–136 (2003).

    Google Scholar 

  • H. Kennedy, E. Gacia, D. P. Kennedy, S. Papadimitriou, and C. M. Duarte, “Organic carbon sources to SE Asian coastal sediments,” Estuarine, Coastal Shelf Sci. 60, 59–68 (2004).

    Article  Google Scholar 

  • W. J. Kenworthy and M. S. Fonseca, “The use of fertilizer to enhance growth of transplanted seagrasses Zostera marina L. and Halodule wrightii Aschers,” J. Mar. Biol. Ecol. 163, 141–161 (1992).

    Article  Google Scholar 

  • M. S. Koch, S. A. Schopmeyer, C. Kyhn-Hausen, C. J. Madden, and J. S. Peters, “Tropical seagrass species tolerance to hypersalinity stress,” Aquat. Bot. 86, 14–24 (2007).

    Article  Google Scholar 

  • E. Kristensen, M. H. Jensen, G. T. Banta, K. Hansen, M. Holmer, and G. M. King, “Transformation and transport of inorganic nitrogen in sediments of a Southeast Asian mangrove forest,” Aquat. Microbial Ecol. 15, 165–175 (1998).

    Article  Google Scholar 

  • K. S. Lee, and K. H. Dunton, “Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum,” Mar. Ecol. 196, 39–48 (2000).

    Article  Google Scholar 

  • K. S. Lee, S. R. Park, and J. B. Kim, “Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula,” Mar. Biol. 147, 1091–1108 (2005).

    Article  Google Scholar 

  • R. Lindholm, A Practical Approach to Sedimentology (Allen and Unwin, London, 1987).

    Book  Google Scholar 

  • M. L. Cambridge and G. A. Kendrick, “Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment,” J. Mar. Biol. Ecol. 371, 34–41 (2009).

    Article  Google Scholar 

  • N. Marba, M. Holmer, E. Gacia, and C. Barron, “Seagrass beds and coastal biogeochemistry,” in Seagrasses: Biology, Ecology and Conservation, Ed. by A.W.D. Larkum, R. J. Orth and C. M. Duarte (Springer, Dordrecht, 2006), pp. 135–157.

    Google Scholar 

  • K. J. McGlathery, P. Berg, and R. Marino, “Using porewater profiles to assess nutrient availability in seagrass vegetated carbonate sediments,” Biogeochemistry 56, 239–263 (2001).

    Article  Google Scholar 

  • K. J. McGlathery, R. Marino, and R. W. Howarth, “Variable rates of phosphate uptake by shallow marine carbonate sediments: mechanisms and ecological significance,” Biogeochemistry 25, 127–146 (1994).

    Article  Google Scholar 

  • J. Mellors, M. Waycott, and H. Marsh, “Variation in biogeochemical parameters across intertidal seagrass meadows in the central Great Barrier Reef region,” Mar. Pollut. Bull. 51, 335–342 (2005).

    Article  Google Scholar 

  • M. Nakaoka, and K. Aioi, “Growth of seagrass Halophila ovalis at Dugong trailscompared to existing withinpatch variation in a Thailand intertidal flat,” Mar. Ecol.: Progr. Ser. 184, 97–103 (1999).

    Article  Google Scholar 

  • E. P. Nobi, E. Dilipan, K. Sivakumar, and T. Thangaradjou, “Distribution and biology of seagrass resources of Lakshadweep group of islands, India,” Ind. J. Geo-Mar. Sci. 40(5), 624–634 (2011).

    Google Scholar 

  • S. R. Olsen, C. V. Cole, F. S. Watanabe, and L. A. Dean, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939 (U.S. Government Printing Office, Washington D.C., 1954).

    Google Scholar 

  • M. B. K. Prasad, and A. L. Ramanathan, “Sedimentary nutrient dynamics in a tropical estuarine mangrove ecosystem,” Estuarine, Coastal Shelf Sci. 80, 60–66 (2008).

    Article  Google Scholar 

  • M. B. K. Prasad, A. L. Ramanathan, and T. Dittmar, “Organic matter and mangrove productivity,” in Management and Sustainable Development of Coastal Zone Environments, Ed. by A. Ramanathan, P. Bhattacharya, T. Dittmar, M.B.K. Prasad, and B. Neupane, (Springer Publications, 2010), pp. 175–193.

    Chapter  Google Scholar 

  • M. B. K. Prasad and A. L. Ramanathan, “Characterization of phosphorus fractions in sediments of a tropical mangrove ecosystem,” Wetlands Ecol. Manag. 18, 165–175 (2010).

    Article  Google Scholar 

  • M. B. K. Prasad and A. L. Ramanathan, “Organic matter characterization in a tropical estuarine-mangrove ecosystem of India: preliminary assessment by using stable isotopes and lignin phenols,” Estuarine, Coastal Shelf Sci. 84(4), 617–624 (2009).

    Article  Google Scholar 

  • M. B. K. Prasad, “Nutrient stoichiometry and eutrophication in Indian mangroves,” Environ. Earth Sci. 67, 293–299 (2012). doi: 10.1007/s12665-011-1508-8.

    Article  Google Scholar 

  • S. Z. Qasim, P. M. A. Bhattathiri, and C. V. Reddy, “Primary production of an atoll in the Laccadives,” Int. Rev. Gesamten Hydrobiol. 57(2), 207–226 (1972).

    Article  Google Scholar 

  • K. Ramamurthy, N. P. Balakrishnan, K. Ravikumar, and R. Ganesan, “Seagrass of Coromandel coast of India,” Flora of India-Ser. 4, Botan. Surv. India, (1992).

    Google Scholar 

  • R. K. Ranjan, J. Routh, A. L. Ramanathan, and J. Val Klump, “Elemental and stable isotope records of organic matter input and its fate in the Pichavaram mangrove-estuarine sediments (Tamilnadu, India),” Mar. Chem. 126, 163–172 (2011).

    Article  Google Scholar 

  • M. A. Rasheed, K. R. Dew, L. J. McKenzie, R. G. Coles, S. P. Kerville, and S. J. Campbell, “Productivity, carbon assimilation and intra-annual change in tropical reef platform seagrass communities of the Torres Strait, north-eastern Australia,” Cont. Shelf Res. 28, 2292–2303 (2008).

    Article  Google Scholar 

  • J. Romero, K. S. Lee, M. Pérez, M. A. Mateo, and T. Alcoverro, “Nutrient dynamics in seagrass ecosystems,” in Seagrasses: Biology, Ecology and Conservation, Ed. by A. W. D. Larkum, R. J. Orth and C.M. Duarte (Springer, Dordrecht, 2006), pp. 227–254.

    Google Scholar 

  • A. Sfriso, and P. F. Ghetti, “Seasonal variation in biomass, morphometric parameters and production of seagrasses in the lagoon of Venice,” Aquat. Bot. 61, 207–223 (1998).

    Article  Google Scholar 

  • D. Shea, “Developing national sediment quality criteria,” Environ. Sci. Technol. 22, 1256–1261 (1988).

    Article  Google Scholar 

  • F. T. Short, “Effects of sediment nutrients on seagrasses literature review and mesocosm experiment,” Aquat. Bot. 27, 41–58 (1987).

    Article  Google Scholar 

  • F. T. Short and C. P. McRoy, “Nitrogen uptake by leaves and roots of the seagrass Zostera marina L.,” Bot. Mar. 27, 547–555 (1984).

    Article  Google Scholar 

  • F. T. Short and H. A. Neckles, “The effects of global climate change on seagrasses,” Aquat. Bot. 63, 169–196 (1999).

    Article  Google Scholar 

  • F. T. Short, D. M. Burdick, and J. E. Kaldy, “Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina,” Limnol. Oceanogr. 40, 740–749 (1995).

    Article  Google Scholar 

  • F. T. Short and S. Wyllie-Echeveria, “Natural and maninduced disturbance of seagrasses,” Environ. Conserv. 23, 17–27 (1996).

    Article  Google Scholar 

  • F. T. Short, W. C. Dennison, and D. G. Capone, “Phosphorus limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments,” Mar. Ecol.: Progr. Ser. 62, 169–174 (1990).

    Article  Google Scholar 

  • R. Sridhar, T. Thangaradjou, and L. Kannan, “Comparative investigation on physic-chemical properties of the coral reef and seagrass ecosystems of the Palk Bay,” Indian J. Mar. Sci. 37(2), 207–213 (2008).

    Google Scholar 

  • J. D. H. Strickland, and T. R. Parsons, “A practical handbook of seawater analysis,” Bulletin of Fisheries Research Board of Canada, (1972).

    Google Scholar 

  • J. Terrados, C. M. Duarte, M. D. Fortes, J. Borum, N. S. R. Agawin, S. Bach, U. Thampanya, N. L. Kamp, W. J. Kenworthy, H. O. Geertz and J. Vermaat, “Changes in community structure and biomass of seagrass communities along gradients of siltation in SE Asia,” Estuarine, Coastal Shelf Sci. 46, 757–768 (1998).

    Article  Google Scholar 

  • Terrados, J. Duarte, C. M. Kamp-Nielsen, L. Agawin, N. S. R. Gacia, E. Lacap, D. Fortes, M.D., J. Borum, M. Lubanski, and T. Greve, “Are seagrass growth and survival affected by reducing conditions in the sediment?” Aquat. Bot. 65, 175–197 (1999).

    Article  Google Scholar 

  • T. Thangaradjou and L. Kannan, “Marine sediment texture and distribution of seagrasses in the Gulf of Mannar biosphere reserve,” Seaweed Research Utilization 27(1–2), 145–154 (2005).

    Google Scholar 

  • T. Thangaradjou, K. Sivakumar, E. P. Nobi, and E. Dilipan, “Distribution of seagrasses along the Andaman and Nicobar Island: a post tsunami survey,” in Recent Trends in Biodiversity of Andaman and Nicobar Island, Ramakrishna, Ed. by C. Raghunathan and C. Sivaperuman (Zoological Survey of India, 2010), pp. 157–160.

    Google Scholar 

  • B. W. Touchette and J. M. Burkholder, “Review of nitrogen and phosphorus metabolism in seagrasses,” J. Exp. Mar. Biol. Ecol. 250, 133–167 (2000).

    Article  Google Scholar 

  • J. E. Vermaat, N. S. R. Agawin, C. M. Duarte, M. D. Fortes, N. Marba, and J. S. Uri, “Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed,” Mar. Ecol.: Progr. Ser. 124, 215–225 (1995).

    Article  Google Scholar 

  • D. I. Walker, and A. J. McComb, “Salinity response of the seagrass Amphibolis antarctica (Labill.) Sonder & Aschers.: an experimental validation of field results,” Aquat. Bot. 36, 359–366 (1990).

    Article  Google Scholar 

  • M. Waycott, C. M. Duarte, T. J. B. Carruthers, and R. J. Orth, “Accelerating loss of seagrasses across the globe threatens coastal ecosystems,” Proc. National Acad. Sci. 106, 12377–12381 (2009).

    Article  Google Scholar 

  • C. K. Wentworth, “A scale of grade and class terms for clastic sediments,” J. Geol. 30, 377–392 (1992).

    Article  Google Scholar 

  • R. C. Zimmerman, R. D. Smith, and R. S. Alberte, “Is growth of eelgrass nitrogen limited? A numerical stimulation of the effects of light and nitrogen on the growth dynamics of Zostera marina,” Mar. Ecol.: Progr. Ser. 41, 167–176 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Thangaradjou.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangaradjou, T., Bala Krishna Prasad, M., Subhashini, P. et al. Biogeochemical processes in tropical seagrass beds and their role in determining the productivity of the meadows. Geochem. Int. 53, 473–486 (2015). https://doi.org/10.1134/S0016702915050055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915050055

Keywords

Navigation